
Casual and Team Collaboration  
in High Performance Computing 

 
Catalina Danis 

Social Computing Group 
IBM T.J. Watson Research Center 

P.O. Box 704 

Yorktown Heights, NY  10598  USA 

danis@us.ibm.com 
 

ABSTRACT 
Successful collaborations are not only occasions for the 
accomplishment of shared goals, but also provide opportunities 
for individual collaborators to learn from each other.  The process 
of knitting together different points of view which derive from 
differences in profession, culture and other factors is believed by 
many to be a critical foundation for successful collaboration.  This 
paper examines the opportunities for such collaborative learning 
among users of High Performance Computing (HPC) systems. It 
contrasts opportunities for learning that arise naturally in long-
term, team collaborative situations with the lesser opportunities in 
more casual, consultant-client relationships. The discussion 
explores how factors conducive to successful collaboration in 
longer, more tightly organized collaboration might be leveraged in 
more transient collaborative relationships.  

1. INTRODUCTION 
Researchers in Computer Supported Cooperative Work (CSCW) 
have long discussed the need for participants in cooperative work 
to develop a common understanding of the problems they are 
addressing.  Concepts such as common ground [3, 7] and common 
information spaces [1, 2], though having very different theoretical 
underpinnings, articulate fundamental concepts around the 
development of shared understandings that take place and are 
believed to be required in successful collaborative interactions. In 
addition to accomplishing work through the process of developing 
a common understanding, multi-disciplinary collaborations by the 
very fact of developing shared understandings provide 
participants with occasions for learning about each other’s areas 
of expertise.  Long-term collaborations characterized by many 
opportunities for creating shared artifacts around which shared 
understandings are developed would be expected to provide 
ample opportunities for such cross-fertilization.  However, there 
many other forms of collaboration [1] which are temporary and 
may occur among participants who do not know each other well 
[1, 5]. How much learning takes place under such circumstances? 
This paper explores how the form of the collaboration impacts the 
opportunity that participants  have to learn from each other in the 
course of accomplishing a common goal.  While it is obvious that 
shorter, less intense forms will provide lesser opportunities, the 
goal is to explore if and how the more fleeting collaborations 
might be shaped to improve opportunities for learning.   

This discussion take place in the context of code development for 
High Performance Computing (HPC) systems where there is a 
severe shortage of the requisite computing skills among scientists 
whose work  depends on the use of HPC systems.  Investigations 
of users in HPC reveals that much of the successful coding for 
HPC systems is fundamentally a collaborative undertaking1. 
Teams typically involve one or more domain experts (i.e., 
scientists) and multiple computational experts. In addition to 
enabling coding work to be completed, a reasonable question is 
whether and, if so, how such collaborative relationships may 
provide an opportunity for scientists to learn computation skills 
from their more computationally skilled collaborators.  

This paper explores how particular interactions in naturally 
occurring collaborative interactions might provide such 
opportunities for less computationally savvy users.  It does this by 
exploring the quality of the collaboration that takes place in team 
collaborative relationships and seeks to understand factors that 
may either facilitate or obstruct collaborative learning. It then asks 
whether some of these factors might be applicable in the more 
causal collaboration which takes place between consultants and 
their clients. 

2. HIGH PERFORMANCE COMPUTING 
One defining characteristic of  HPC is the requirement for  
parallel, as opposed to serial, coding.  Computations may be 
distributed over up to tens of thousands of  processors and the 
resulting processor output must be re-integrated to produce 
correct results [6]. Current HPC machines are of teraflop scale, 
meaning that they are capable of calculating one trillion floating 
point calculations per second, as measured by a benchmark task.  
These types of machines are sought after by scientists who need to 
do calculations that can not be done with conventional, serial 
machines. One of the computational experts interviewed for this 
project said with respect to  

                                                                 
1 A significant exception to collaborative coding is that done by 

“hero programmers.”  These are exceptionally gifted coders who 
work individually to develop entire modules or complete codes.  
However, this investigation and that of Halverson [9] suggests 
that the prevalence of this mode of working is overstated by 
HPC folklore. 



Parallel machines are becoming more commonplace and their uses 
are spreading beyond the traditional military and government-
driven applications to the  commercial space, including 
applications in finance and  entertainment [4]. As was noted 
above, a serious problem facing the HPC community is the 
shortage of domain experts who are literate in HPC [4, 6].  
Consequently there are missed opportunities to drive the basic 
scientific and applied work which HPC technology enables.  

Not only are there enormous barriers to entry for content experts, 
current computationally savvy users also have problems switching 
to new machines and new tools. These tasks of porting to a new 
machine and tuning or optimizing the code to take advantage of 
the machine’s features, requires the highly specialized knowledge 
of computer engineering. While parallel coding courses are 
becoming commonplace in graduate Computer Science 
departments [6], there is a shortage of computationally expert 
teachers in science departments. Interviews conducted with 
computational experts with advanced scientific degrees who have 
made the transition to computational literacy, reveal a conflict 
between practicing both science and computation at expert levels.  
A typical situation is described by an elite code optimizer, trained 
as an electronic atomic physicist: 

“… you learn Fortran, write a program … Because you don’t 
know a lot about computing, your code does not run well, but you 
spend little time on making it work better because it interferes 
with the activities you need to survive as a scientist, like 
publishing….”  To focus on optimization, “… you need to 
develop a body of knowledge about hardware, memory, protocols.  
Basically, you need to dig deeper, not in Computer Science, but in 
computer engineering. … I am no longer a practicing scientist.” 
Consequently, domain experts typically  learn on the job after 
completing their graduate training.  

The examination of collaboration between scientists and 
computational experts in this paper is based on interviews with 
computational experts only.  This is a shortcoming which I hope 
to redress with further data collection where the goal is to 
interview multiple participants engaged in collaborative 
relationships (e.g., scientists as well as consultants, multiple 
members of each team) and to collect communicative artifacts of 
the collaboration. The current data were collected as part of an 
initial, broad foundational investigation into work practices of 
users of HPC systems.  It is part of a large, multi-disciplinary 
project aimed at understanding productivity bottlenecks amongst 
users of HPC systems in order to develop improved hardware, 
software and tools.   

3. SITES AND STUDY METHODS 
The examples in this paper are drawn from interviews with ten 
individuals who are highly skilled at computation for HPC 
systems.  Five (one manager and four consultants) work at one of 
the five supercomputing centers in the United States that are 
funded by the National Science Foundation, a government science 
agency.  The mandate of the supercomputing centers is to serve as 
a computational resource for scientists whose work requires the 
use of HPC systems but who do not have other access to HPC 
systems.  Scientists gain access to the center’s resources by 
writing a proposal requesting computer time. The criteria for 
selection at the supercomputing center where interviews were 
carried out includes demonstration that the scientist’s application 

“can scale,” that is, can make use of the terascale capabilities of 
the center’s machines. Those whose proposals are accepted are 
given access to help from the center’s consultant staff.  All of the 
consultants have post-graduate degrees (2 physicists, a quantum 
chemist and a civil engineer) and had acquired computation skills, 
though not necessarily parallel computation skills, during their 
graduate work. They have pursued computation rather than 
science as their primary work after completing their studies.   In 
addition to their consulting work they, as well as their manager, 
develop HPC codes in their areas of interest.   

The other five interview participants are current or former 
employees of an international vendor of HPC hardware and 
software, which is also the author’s employer. Three are current or 
former employees of the research division.  Their work is in the  
development of tools and applications for experimental HPC 
systems.  The other two are technical employees in an HPC sales 
organization.  Their job responsibilities include improving the 
performance of clients’ codes.  

The data reported here were gathered primarily through semi-
structured interviews.  Each individual was interviewed at least 
once for between 60 and 90 minutes.  Six of the initial interviews 
were done face-to-face at the individual’s workplace; the others 
were done over the telephone.  Nine of the informants were 
interviewed only by the author.  A colleague of the author’s 
participated in the interview of the final informant. The author 
made transcriptions of audiotaped records (5 of 10) or from 
handwritten notes made during the interview. The interviews were 
designed to elicit information about the interview participant 
(their educational and work training) and to understand their 
current work (its goals and practices and productivity challenges) 
in detail.  The focus on collaboration emerged during analysis and 
served as the subject of briefer follow-up interviews. These were 
done by means of  email, telephone or face-to-face with 5 of the 
original ten informants. 

4. FORMS OF COLLABORATION IN HPC 
Two forms of collaboration are discussed in this paper. The first 
form, designated as long-term, team collaboration, consists of a 
small team of core members that has worked together 
intermittently for a long-period of time (more than a decade in the 
case discussed here) on a single, evolving code  project. The 
second form, designated as casual collaboration, consists of the 
short-term, sporadic interaction between one scientist who has 
written a code and one consultant who has been assigned to help  
him or her bring the code to a running state on one of the 
supercomputing center’s machines. In both forms, the participants 
share the same overall goal of producing a working piece of code 
for an HPC system, although they differ in terms of their 
relationship to the codes.  In the team collaboration situation 
discussed below, all the team members may be considered to own 
the code.  However, in the causal collaboration situations 
discussed below, the scientist owns the code. 

The two forms of collaboration also differ on other dimensions.  
In terms of  the primary method of  information exchange, the 
communication mode of participants in the causal form of 
collaboration consisted entirely of  email or telephone exchanges.  
In contrast, the communication mode of the participants in the 
team collaboration varied over the course of their collaborative 
work. It included intense periods of closely coupled collaboration, 



such as when the members needed to make decisions about how 
to approach a problem, needed to decide on the direction to take 
in their project or they had reached a point of code integration.  
Communication during these periods was carried out face-to-face. 
It also included long periods during which the work of the 
members was pursued relatively independently. During these 
periods, their communication consisted of email and telephone 
exchanges.  It should be added, though, that the longer of the 
causal collaborations were characterized by similar rhythms of  
waning and waxing collaboration though they consisted entirely 
of email and telephone exchanges.  

The two forms of collaborations also differed in the duration of 
the collaborative work. The team collaborations tended to be very 
long lived, with the team profiled below having been constituted 
for over a decade.  Another of the team collaborations I learned 
about through my interviews had also been going on for over a 
decade, while the third had recently started. The long-lived 
character refers to the core team members, for during the 
collaborative work they were supported by “… a changing array 
of graduate students and post-docs.” In contrast, the causal 
collaboration partners worked together for weeks or months.   

4.1 Team Collaboration 
All five of the employees of the supercomputing center develop 
their own HPC codes as part of their employment.  I have 
explored team collaboration instances with three of the 
consultants and I describe one of these in some detail below. 

This team works in the domain of earthquake simulation. The 
portion of their work discussed here has contributed to the porting 
of their codes, developed over several years, for simulating 
damage to buildings as a function of the underlying physical 
substrate to a terascale machine at the supercomputing center. The 
opportunity to use the supercomputing center’s terascale machine 
enables the simulation of earthquake damage to include buildings 
in a large portion of the San Fernando Valley (80 kilometers 
square by 30 kilometers deep).  The impetus for the team came 
from civil engineers who have an interest in predicting  how 
particular buildings need to be built to withstand earthquakes 
based on the underlying science of the propagation of waves 
through ground materials and the faults that set off the 
earthquakes. The version of the code discussed here was 
completed in 2003 and was  awarded the prestigious Gordon Bell 
prize for code performance, which recognized the team for  the 
level of performance their codes achieved on an HPC machine.  

The core collaboration team consisted of two civil engineers, a 
computer scientist and a code optimizer.  The code optimizer was 
the only person on the team who has been interviewed for this 
study thus far. In this collaborative situation, all four of the core 
team members were computationally skilled, though their areas of 
expertise differed.   The civil engineers had developed codes for 
calculating the propagation of waves through substrates  ranging 
from loose soil through hard rock.  The computer scientist is an 
expert in developing the complex, irregular meshes required to 
map the physical area of interest onto an appropriate data 
structure and in distributing the calculations across a large number 
of processors.   The code optimizer brought knowledge of the 
terascale HPC machine that was required to run the large 
simulation (one hundred million sub-volumes) to address the 
scientific question.  His role was to adapt theoretical solutions to 

the real world of a particular HPC machine. Through his expertise 
in areas such as communication bandwidth, latency, and I/O, he 
helped the team adapt the codes to the new machine.    

From the standpoint of the optimization expert, the rhythm of the 
work was such that the three members with scientific expertise 
were able to work independently for periods of several months 
and then the team would meet face-to-face for periods of three to 
four weeks of intense closely coupled work.  (Additional 
interviews with the scientific experts might reveal additional 
periods of tightly coupled work involving sub-teams.) 

4.1.1 Learning From Each Other 
During the face-to-face periods the various codes developed by 
the civil engineers and the algorithm expert would be tested on 
the HPC machine at the supercomputing center. Many test runs 
would be done to determine how various aspects of the algorithms 
performed on the target machine.  As a result of the performance 
measurements, areas were identified where the algorithms would 
need to be modified in order for the codes to take advantage of the 
properties of the HPC machine.  During these periods the team 
would draw heavily on the expertise of the optimization expert in 
order to learn how to modify their codes.  The team would then 
disperse and work independently to incorporate their 
collaboratively acquired knowledge into their codes.  The 
scientists credit the ability to use the center’s machine efficiently 
to their success in being able to run such a large, scientifically 
interesting simulation.  The algorithmic expert noted “we’ve 
benefited enormously from having this powerful system at <the 
supercomputing center> and we’ve developed algorithms to 
maximize out ability to use it well” [8]).  These algorithmic 
changes were critical for enabling the scientists to test a big 
enough problem – mapping an area 80 kilometers square by 30 
kilometers deep of the San Fernando Valley –   in their 
simulation.  Without integrating the knowledge held by the code 
optimizer, their scientific endeavor would have failed.   

Learning from each other is important not only in enabling a 
better solution to the shared problem, but also in more subtle ways 
that enable more effective teaming through give and take on part 
of the members. The informant noted that learning about each 
other’s domains was also critical for helping team members 
“avoid making unreasonable demands of each other,” and 
conversely, for preventing “push-back” when the demands were 
reasonable.  In any collaborative problem solving effort, conflicts 
can arise about how to do things which are particularly difficult to 
resolve if a solution will have a disproportionate impact on one 
member or a sub-group of the team.  For example, a particular 
partitioning of the data across processors may be assumed by the 
data structure expert.  However, this configuration may create 
problems for the optimizer who is aware of the engineering 
constraints on the network latency and the performance of I/O 
nodes.  To the extent that accommodating another expert’s needs 
creates problems for oneself, there is an opportunity for pushback.  
However, the informant in this group noted that having an 
appreciation for the reasons that led the other member to propose 
the particular solution made the others respond in a more open-
minded manner.    

In addition to the opportunities for learning from each other that 
time afforded the team members, additional credit was given to 
one of the co-principal investigators for his skill at assembling a 
“learning organization.”  He emphasized the need for all team 



members, including the array of relatively transient graduate 
students and post-doctoral fellows, to actively learn about each 
other’s work. 

4.2 Casual Collaboration 
The running codes that resulted from the collaborations between 
the scientists and the consultants were much smaller than codes 
developed under the condition of team collaboration. This stands 
to reason as many of these codes were developed by a single 
individual, namely the scientist, with various degrees of help from 
the consultant. The supercomputing center where these 
observations were done selects applicants based on the expected 
scalability of their code.   The supercomputing center’s 
administrators are interested in determining if “… they are big 
users (of computing resources) or do they have the potential to be 
a big user.”  Consequently, the consultants work with scientists at 
all levels of computational expertise.  “Some start with parallel 
code, others with buggy parallel code.  Some are still developing 
and want ideas on how to do what they need to do.” 

Scientists who wanted help initiated these casual collaborations 
through an email to the supercomputing center’s “hotline” once 
their proposal for computer time was approved. The head of the 
support organization then assigned a consultant to work with the 
scientist, matching domain expertise whenever possible. The role 
of the consultant was to “…help the scientist fix any problems 
that prevented the code from achieving a production run.” The 
amount and type of help the consultant provided  depended in 
large part on the need of the scientist and the amount of 
knowledge the consultant had about the scientist’s domain. The 
scientists who worked with the consultants whose data are 
discussed here varied considerably in their level of computational 
expertise. However, there was general agreement with the 
statement of one of the consultants that:  “the majority of the users 
are at the lower skill levels.”  

4.2.1 Types of Users and Help Received 
Those who required less intensive help included computationally 
capable users who needed support with operating in the machine 
and infrastructure environment available at the supercomputing 
center, but could code their applications themselves.  The 
problems encountered by these types of users could nevertheless 
consume considerable amounts of the consultant’s time; 
frequently on the order of two weeks. One example arose because 
of different implementations of the programming language MPI22 
at the supercomputing center and the scientist’s home machine.  
The consultant described the scientist involved in this example as 
“a good type of user who can isolate for you what he needed.”  
The scientist was suspicious of the results he obtained from his 
initial runs of his debugged code on the supercomputing center’s 
machine and developed a small one page test program to show the 
consultant what he intended to do.  However, it took several 
rounds of emails to come to a shared understanding of the 
solution.  The solution developed and debugged by the consultant 
would fail to produce the correct scientific results when the 
scientist ran it on his home machine which he was using for 

                                                                 
2 MPI is the Message Passing Interface, a library of parallel 

constructs added to C or Fortran to create parallel code. The 
number two refers to a newer version of the of the library that is 
being phased in at the center. 

development and debugging. Eventually, after several rounds of 
emails, they were able to develop a joint understanding of the 
cause of the problem. 

At the other end of the range were clients who needed help with 
their application code.  Discussing one such user, one of the 
consultants noted “I had to literally work with his code.  Had to 
work with his application to figure out the problems and then fix 
them.” The types of problems addressed by the consultant might 
relate to fundamental concepts in parallel programming including 
the need to synchronize code operations through parallel 
constructs such as locks and wait functions.  Occasionally,  the 
consultants even had to solve serial programming problems such 
as memory leaks.  

The type of help the consultant could provide depended to some 
extent on the match in the pair’s scientific background.  As was 
demonstrated, the consultants were able to provide value to the 
scientists even when they did not share their scientific 
background.  Such “generic” computational help has some 
limitations though. For example, there are domains in which some 
familiarity on the consultant’s part with the scientific domain is 
critical.  Many Quantum Chemists, for example,  do not write 
“raw code,” but instead use one of the several “packages” that 
exist in this computationally mature area.  The concept of 
packages in Quantum Chemistry is similar to statistical packages 
used by social scientists: standard types of analyses are encoded in 
pre-specified methods which are made available for the scientist 
to “plug-in” her data.  The consultant needs to understand the 
models behind the various analyses in order to advise the scientist 
appropriately. <say something about Shaun’s expertise> 

Even in the case of codes written in MPI or other standard HPC 
“languages,” the generic consultant is limited in the help he can 
provide.  Recall the case of the computationally knowledgeable 
client who suspected his results though his code ran without error 
on the center’s machines. One of the informants noted that in such 
cases as a “generic” consultant “You don’t know really.  The user 
does.”   The typically short-term mature of the consultant-client 
relationship means that the consultant does not have the 
opportunity to learn enough about the domain to provide domain-
specific support. Unlike the team collaboration case described 
above where everyone learned a great deal about the earthquake 
domain as a result of the long collaboration, casual collaborations 
between scientists and computational experts who do not begin 
with a shared  domain expertise is potentially a permanent 
liability.   

4.2.2 Division of Labor 
Another potential area for problems that was identified in the 
casual collaboration related to the expected division of labor 
between the consultants and their clients. On the surface, the 
division of labor seems straightforward.  One consultant described 
his job of a computational science consultant thus: “What it is, we 
have researchers who know their work, but do not have the 
intricate details to program the machines.  So we interact with 
them; we know the machines, they know their work.  (We) get the 
programs to run well.”  However, cases described by the 
consultants revealed that the boundary between the roles is open 
to interpretation.  One case concerns a consultant working with a 
user of one of the Quantum Chemistry packages.  The client had 
little knowledge of the particular package she needed to use, 
though she was well versed in another of the Quantum Chemistry 



packages. Her code had several problems.  The consultant 
diagnosed one of these as being due to a defect in the version of 
the package installed at the supercomputing center and he devised 
a work-around for his client.  Based on his expertise in Quantum 
Chemistry and the package the client was using, the consultant 
concluded that the other problem was due to the client’s lack of 
understanding of how the package worked.  Given her knowledge 
of another package, he expected her to be able to form a correct 
understanding of the current package. However, she pushed back, 
giving him the impression that “she wanted me to do it for her.”  

Some of the clients seemed to have been setting clear limits with 
respect to how much computation they were willing to learn. For 
example, one of the consultants noted that many users are only 
interested in getting their code to run, and are unwilling to work 
to make it run well. He noted that there are “all kinds of users who 
are capable but it takes quite a time commitment to do that; but 
most users are not interested in it. ”  This sentiment is reminiscent 
of the feelings expressed by the atomic physicist turned optimizer 
quoted previously: computation can seem like a distraction from 
the main work of the scientist.   

4.2.3 The Consultant’s Influence 
Since many of the scientists learn to code through informal means 
(“on the job”), they may not necessarily learn good programming 
practices.  One consultant noted that “Users are stuck in old 
practices.  One of the problems is that they are stuck in old 
models.”  They often fail to learn fundamentals of programming 
and they fail to take advantage of newer tools that can make them 
more efficient (like IDE’s and newer, higher-level languages).  
This consultant gave an example concerning the practice of 
declaring all of one’s variables in a single place in one’s code.  
While this is not required by some programming languages (e.g., 
Fortran), it is a good practice that is especially useful in making it 
easier in consultant-client collaborations when one has to read the 
code written by another person.  This particular consultant has 
encountered resistance from some of his clients to this optional 
practice.  Consequently, he started giving his scientific 
collaborators an ultimatum around declaring all variables in a 
single place even though (the language they were using in 
combination with MPI) Fortran does not require it.  “I tell users 
that if you don’t use it you are on your own.  I keep telling him 
‘hey you have to put this in; it’s good practice.”   

One interpretation of this example is that it may be possible for 
the consultants to exert some degree of influence on their clients.  
Even though the relationship is short-term and thus limited in the 
amount of cross-influence that can occur, it may be possible for 
the consultant to have some leverage with the client and thereby 
have the opportunity to teach him some minimal aspects of good 
programming practice.   

While many of the consultant-client collaborations provide little 
opportunity for mutual influence because of their brevity, there 
are some exceptions.  Once the codes are completely debugged, 
the casual collaborations between consultants and their clients are 
disbanded and the scientist and his code are passed to the Runtime 
Support group.  The Runtime Support group is responsible for 
ensuring that the codes complete their production runs. As these 
may take several weeks to months (most codes share the HPC 
machine at the center with many other users), there is ample 
opportunity for problems to occur (e.g., a failing file system, 
defective CPU nodes).  The members of the Runtime Support 

organization are primarily responsible for helping the scientist 
maneuver these problems.  

However, the consultants reported that occasionally the scientists 
reverted to asking them for help after responsibility for their codes 
had been transitioned to the Runtime Support staff. One 
consultant hypothesized that this might indicate that the scientist 
had gotten comfortable with him and perhaps felt he could rely on 
him.  Especially in the case of the less technically experienced 
scientists, this could also indicate a reluctance to attempt 
communication with a person who may not “speak their 
language.” Developing relationships could provide occasions for 
the consultant to influence the client.  This could be potentially 
fruitful if scientists are repeat users of the services of the 
supercomputing center.  It is the practice of the center to reunite 
previous consultant-client pairs should the scientist return to the 
center for another run of their code. While this is primarily 
motivated by a goal of efficiency, it also provides for continuity in 
the relationship between the consultant and the scientist.   

5. CONCLUSIONS AND FUTURE WORK 
These data support the expected differences between the value 
provided in team collaborations and in casual collaborations. 
With longer-term, more closely bound collaboration, there is both 
more opportunity to develop shared understandings and more 
reason to make commitments to accommodate each other (2, 7).  
Thus the circumstances of the team type of collaboration make 
learning from each other possible. In the particular case of team 
collaboration that was described, the depth of the expertise 
sharing that took place enabled fundamental changes in the work 
of its members.  The result of their work was fundamentally a 
shared creation.   

While general programming help from a consultant can mean the 
difference between a scientist producing running code or not, the 
lack of shared knowledge places some significant restrictions on 
the value that can be provided the scientist. Lack of shared 
knowledge between consultant and client imposes a greater 
demand on the scientist as he is responsible (or she) for judging 
the scientific accuracy of his (or her) results. And the limited 
duration of the collaborative relationship means that opportunities 
to teach each other will also be limited. Additionally, the time 
commitment required of the scientist to improve his 
computational skills is at odds with the need to devote time to his 
science. 

However, the picture for the more casual collaborations is not 
hopeless.  There is some suggestion that the more computationally 
skilled scientists may be more willing to invest time to add to their 
knowledge.  This was demonstrated by the scientist who instead 
of depending on the consultant when his code did not work as 
expected, developed a test program to isolate the problem and 
help the consultant with the problem diagnosis.  The consultants 
may also have some leverage with their clients who are less 
inclined to undertake to develop computational expertise.  At least 
in one case, a consultant was willing to set conditions for 
providing help.  While it is not clear form these data what the 
effect of the attempt to shape the client’s behavior was, it may 
provide an opportunity to encourage learning to take place.  

This paper is based on pilot data: It is based on a small number of 
cases and preliminary discussions with the informants. This will 
be corrected as this work progresses.  A more serious problem is 



that only one participant in each collaborative relationship was 
interviewed.  This of course makes it impossible to corroborate 
the interpretations of events, with the  possibility that descriptions 
are incomplete or incorrect.  While I expect that I will be able to 
correct this in the case of the team collaborations I may not be 
able to do so in the case of the consultant relationships, at least 
not with the current participants.  The only solution may be find 
other cases of such relationships where access to the clients will 
be less restrictive  (perhaps internally at my employer’s). 
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