
Casual and Team Collaboration
in High Performance Computing

Catalina Danis

Social Computing Group
IBM T.J. Watson Research Center

P.O. Box 704

Yorktown Heights, NY 10598 USA

danis@us.ibm.com

ABSTRACT
Successful collaborations are not only occasions for the
accomplishment of shared goals, but also provide opportunities
for individual collaborators to learn from each other. The process
of knitting together different points of view which derive from
differences in profession, culture and other factors is believed by
many to be a critical foundation for successful collaboration. This
paper examines the opportunities for such collaborative learning
among users of High Performance Computing (HPC) systems. It
contrasts opportunities for learning that arise naturally in long-
term, team collaborative situations with the lesser opportunities in
more casual, consultant-client relationships. The discussion
explores how factors conducive to successful collaboration in
longer, more tightly organized collaboration might be leveraged in
more transient collaborative relationships.

1. INTRODUCTION
Researchers in Computer Supported Cooperative Work (CSCW)
have long discussed the need for participants in cooperative work
to develop a common understanding of the problems they are
addressing. Concepts such as common ground [3, 7] and common
information spaces [1, 2], though having very different theoretical
underpinnings, articulate fundamental concepts around the
development of shared understandings that take place and are
believed to be required in successful collaborative interactions. In
addition to accomplishing work through the process of developing
a common understanding, multi-disciplinary collaborations by the
very fact of developing shared understandings provide
participants with occasions for learning about each other’s areas
of expertise. Long-term collaborations characterized by many
opportunities for creating shared artifacts around which shared
understandings are developed would be expected to provide
ample opportunities for such cross-fertilization. However, there
many other forms of collaboration [1] which are temporary and
may occur among participants who do not know each other well
[1, 5]. How much learning takes place under such circumstances?
This paper explores how the form of the collaboration impacts the
opportunity that participants have to learn from each other in the
course of accomplishing a common goal. While it is obvious that
shorter, less intense forms will provide lesser opportunities, the
goal is to explore if and how the more fleeting collaborations
might be shaped to improve opportunities for learning.

This discussion take place in the context of code development for
High Performance Computing (HPC) systems where there is a
severe shortage of the requisite computing skills among scientists
whose work depends on the use of HPC systems. Investigations
of users in HPC reveals that much of the successful coding for
HPC systems is fundamentally a collaborative undertaking1.
Teams typically involve one or more domain experts (i.e.,
scientists) and multiple computational experts. In addition to
enabling coding work to be completed, a reasonable question is
whether and, if so, how such collaborative relationships may
provide an opportunity for scientists to learn computation skills
from their more computationally skilled collaborators.

This paper explores how particular interactions in naturally
occurring collaborative interactions might provide such
opportunities for less computationally savvy users. It does this by
exploring the quality of the collaboration that takes place in team
collaborative relationships and seeks to understand factors that
may either facilitate or obstruct collaborative learning. It then asks
whether some of these factors might be applicable in the more
causal collaboration which takes place between consultants and
their clients.

2. HIGH PERFORMANCE COMPUTING
One defining characteristic of HPC is the requirement for
parallel, as opposed to serial, coding. Computations may be
distributed over up to tens of thousands of processors and the
resulting processor output must be re-integrated to produce
correct results [6]. Current HPC machines are of teraflop scale,
meaning that they are capable of calculating one trillion floating
point calculations per second, as measured by a benchmark task.
These types of machines are sought after by scientists who need to
do calculations that can not be done with conventional, serial
machines. One of the computational experts interviewed for this
project said with respect to

1 A significant exception to collaborative coding is that done by

“hero programmers.” These are exceptionally gifted coders who
work individually to develop entire modules or complete codes.
However, this investigation and that of Halverson [9] suggests
that the prevalence of this mode of working is overstated by
HPC folklore.

Parallel machines are becoming more commonplace and their uses
are spreading beyond the traditional military and government-
driven applications to the commercial space, including
applications in finance and entertainment [4]. As was noted
above, a serious problem facing the HPC community is the
shortage of domain experts who are literate in HPC [4, 6].
Consequently there are missed opportunities to drive the basic
scientific and applied work which HPC technology enables.

Not only are there enormous barriers to entry for content experts,
current computationally savvy users also have problems switching
to new machines and new tools. These tasks of porting to a new
machine and tuning or optimizing the code to take advantage of
the machine’s features, requires the highly specialized knowledge
of computer engineering. While parallel coding courses are
becoming commonplace in graduate Computer Science
departments [6], there is a shortage of computationally expert
teachers in science departments. Interviews conducted with
computational experts with advanced scientific degrees who have
made the transition to computational literacy, reveal a conflict
between practicing both science and computation at expert levels.
A typical situation is described by an elite code optimizer, trained
as an electronic atomic physicist:

“… you learn Fortran, write a program … Because you don’t
know a lot about computing, your code does not run well, but you
spend little time on making it work better because it interferes
with the activities you need to survive as a scientist, like
publishing….” To focus on optimization, “… you need to
develop a body of knowledge about hardware, memory, protocols.
Basically, you need to dig deeper, not in Computer Science, but in
computer engineering. … I am no longer a practicing scientist.”
Consequently, domain experts typically learn on the job after
completing their graduate training.

The examination of collaboration between scientists and
computational experts in this paper is based on interviews with
computational experts only. This is a shortcoming which I hope
to redress with further data collection where the goal is to
interview multiple participants engaged in collaborative
relationships (e.g., scientists as well as consultants, multiple
members of each team) and to collect communicative artifacts of
the collaboration. The current data were collected as part of an
initial, broad foundational investigation into work practices of
users of HPC systems. It is part of a large, multi-disciplinary
project aimed at understanding productivity bottlenecks amongst
users of HPC systems in order to develop improved hardware,
software and tools.

3. SITES AND STUDY METHODS
The examples in this paper are drawn from interviews with ten
individuals who are highly skilled at computation for HPC
systems. Five (one manager and four consultants) work at one of
the five supercomputing centers in the United States that are
funded by the National Science Foundation, a government science
agency. The mandate of the supercomputing centers is to serve as
a computational resource for scientists whose work requires the
use of HPC systems but who do not have other access to HPC
systems. Scientists gain access to the center’s resources by
writing a proposal requesting computer time. The criteria for
selection at the supercomputing center where interviews were
carried out includes demonstration that the scientist’s application

“can scale,” that is, can make use of the terascale capabilities of
the center’s machines. Those whose proposals are accepted are
given access to help from the center’s consultant staff. All of the
consultants have post-graduate degrees (2 physicists, a quantum
chemist and a civil engineer) and had acquired computation skills,
though not necessarily parallel computation skills, during their
graduate work. They have pursued computation rather than
science as their primary work after completing their studies. In
addition to their consulting work they, as well as their manager,
develop HPC codes in their areas of interest.

The other five interview participants are current or former
employees of an international vendor of HPC hardware and
software, which is also the author’s employer. Three are current or
former employees of the research division. Their work is in the
development of tools and applications for experimental HPC
systems. The other two are technical employees in an HPC sales
organization. Their job responsibilities include improving the
performance of clients’ codes.

The data reported here were gathered primarily through semi-
structured interviews. Each individual was interviewed at least
once for between 60 and 90 minutes. Six of the initial interviews
were done face-to-face at the individual’s workplace; the others
were done over the telephone. Nine of the informants were
interviewed only by the author. A colleague of the author’s
participated in the interview of the final informant. The author
made transcriptions of audiotaped records (5 of 10) or from
handwritten notes made during the interview. The interviews were
designed to elicit information about the interview participant
(their educational and work training) and to understand their
current work (its goals and practices and productivity challenges)
in detail. The focus on collaboration emerged during analysis and
served as the subject of briefer follow-up interviews. These were
done by means of email, telephone or face-to-face with 5 of the
original ten informants.

4. FORMS OF COLLABORATION IN HPC
Two forms of collaboration are discussed in this paper. The first
form, designated as long-term, team collaboration, consists of a
small team of core members that has worked together
intermittently for a long-period of time (more than a decade in the
case discussed here) on a single, evolving code project. The
second form, designated as casual collaboration, consists of the
short-term, sporadic interaction between one scientist who has
written a code and one consultant who has been assigned to help
him or her bring the code to a running state on one of the
supercomputing center’s machines. In both forms, the participants
share the same overall goal of producing a working piece of code
for an HPC system, although they differ in terms of their
relationship to the codes. In the team collaboration situation
discussed below, all the team members may be considered to own
the code. However, in the causal collaboration situations
discussed below, the scientist owns the code.

The two forms of collaboration also differ on other dimensions.
In terms of the primary method of information exchange, the
communication mode of participants in the causal form of
collaboration consisted entirely of email or telephone exchanges.
In contrast, the communication mode of the participants in the
team collaboration varied over the course of their collaborative
work. It included intense periods of closely coupled collaboration,

such as when the members needed to make decisions about how
to approach a problem, needed to decide on the direction to take
in their project or they had reached a point of code integration.
Communication during these periods was carried out face-to-face.
It also included long periods during which the work of the
members was pursued relatively independently. During these
periods, their communication consisted of email and telephone
exchanges. It should be added, though, that the longer of the
causal collaborations were characterized by similar rhythms of
waning and waxing collaboration though they consisted entirely
of email and telephone exchanges.

The two forms of collaborations also differed in the duration of
the collaborative work. The team collaborations tended to be very
long lived, with the team profiled below having been constituted
for over a decade. Another of the team collaborations I learned
about through my interviews had also been going on for over a
decade, while the third had recently started. The long-lived
character refers to the core team members, for during the
collaborative work they were supported by “… a changing array
of graduate students and post-docs.” In contrast, the causal
collaboration partners worked together for weeks or months.

4.1 Team Collaboration
All five of the employees of the supercomputing center develop
their own HPC codes as part of their employment. I have
explored team collaboration instances with three of the
consultants and I describe one of these in some detail below.

This team works in the domain of earthquake simulation. The
portion of their work discussed here has contributed to the porting
of their codes, developed over several years, for simulating
damage to buildings as a function of the underlying physical
substrate to a terascale machine at the supercomputing center. The
opportunity to use the supercomputing center’s terascale machine
enables the simulation of earthquake damage to include buildings
in a large portion of the San Fernando Valley (80 kilometers
square by 30 kilometers deep). The impetus for the team came
from civil engineers who have an interest in predicting how
particular buildings need to be built to withstand earthquakes
based on the underlying science of the propagation of waves
through ground materials and the faults that set off the
earthquakes. The version of the code discussed here was
completed in 2003 and was awarded the prestigious Gordon Bell
prize for code performance, which recognized the team for the
level of performance their codes achieved on an HPC machine.

The core collaboration team consisted of two civil engineers, a
computer scientist and a code optimizer. The code optimizer was
the only person on the team who has been interviewed for this
study thus far. In this collaborative situation, all four of the core
team members were computationally skilled, though their areas of
expertise differed. The civil engineers had developed codes for
calculating the propagation of waves through substrates ranging
from loose soil through hard rock. The computer scientist is an
expert in developing the complex, irregular meshes required to
map the physical area of interest onto an appropriate data
structure and in distributing the calculations across a large number
of processors. The code optimizer brought knowledge of the
terascale HPC machine that was required to run the large
simulation (one hundred million sub-volumes) to address the
scientific question. His role was to adapt theoretical solutions to

the real world of a particular HPC machine. Through his expertise
in areas such as communication bandwidth, latency, and I/O, he
helped the team adapt the codes to the new machine.

From the standpoint of the optimization expert, the rhythm of the
work was such that the three members with scientific expertise
were able to work independently for periods of several months
and then the team would meet face-to-face for periods of three to
four weeks of intense closely coupled work. (Additional
interviews with the scientific experts might reveal additional
periods of tightly coupled work involving sub-teams.)

4.1.1 Learning From Each Other
During the face-to-face periods the various codes developed by
the civil engineers and the algorithm expert would be tested on
the HPC machine at the supercomputing center. Many test runs
would be done to determine how various aspects of the algorithms
performed on the target machine. As a result of the performance
measurements, areas were identified where the algorithms would
need to be modified in order for the codes to take advantage of the
properties of the HPC machine. During these periods the team
would draw heavily on the expertise of the optimization expert in
order to learn how to modify their codes. The team would then
disperse and work independently to incorporate their
collaboratively acquired knowledge into their codes. The
scientists credit the ability to use the center’s machine efficiently
to their success in being able to run such a large, scientifically
interesting simulation. The algorithmic expert noted “we’ve
benefited enormously from having this powerful system at <the
supercomputing center> and we’ve developed algorithms to
maximize out ability to use it well” [8]). These algorithmic
changes were critical for enabling the scientists to test a big
enough problem – mapping an area 80 kilometers square by 30
kilometers deep of the San Fernando Valley – in their
simulation. Without integrating the knowledge held by the code
optimizer, their scientific endeavor would have failed.

Learning from each other is important not only in enabling a
better solution to the shared problem, but also in more subtle ways
that enable more effective teaming through give and take on part
of the members. The informant noted that learning about each
other’s domains was also critical for helping team members
“avoid making unreasonable demands of each other,” and
conversely, for preventing “push-back” when the demands were
reasonable. In any collaborative problem solving effort, conflicts
can arise about how to do things which are particularly difficult to
resolve if a solution will have a disproportionate impact on one
member or a sub-group of the team. For example, a particular
partitioning of the data across processors may be assumed by the
data structure expert. However, this configuration may create
problems for the optimizer who is aware of the engineering
constraints on the network latency and the performance of I/O
nodes. To the extent that accommodating another expert’s needs
creates problems for oneself, there is an opportunity for pushback.
However, the informant in this group noted that having an
appreciation for the reasons that led the other member to propose
the particular solution made the others respond in a more open-
minded manner.

In addition to the opportunities for learning from each other that
time afforded the team members, additional credit was given to
one of the co-principal investigators for his skill at assembling a
“learning organization.” He emphasized the need for all team

members, including the array of relatively transient graduate
students and post-doctoral fellows, to actively learn about each
other’s work.

4.2 Casual Collaboration
The running codes that resulted from the collaborations between
the scientists and the consultants were much smaller than codes
developed under the condition of team collaboration. This stands
to reason as many of these codes were developed by a single
individual, namely the scientist, with various degrees of help from
the consultant. The supercomputing center where these
observations were done selects applicants based on the expected
scalability of their code. The supercomputing center’s
administrators are interested in determining if “… they are big
users (of computing resources) or do they have the potential to be
a big user.” Consequently, the consultants work with scientists at
all levels of computational expertise. “Some start with parallel
code, others with buggy parallel code. Some are still developing
and want ideas on how to do what they need to do.”

Scientists who wanted help initiated these casual collaborations
through an email to the supercomputing center’s “hotline” once
their proposal for computer time was approved. The head of the
support organization then assigned a consultant to work with the
scientist, matching domain expertise whenever possible. The role
of the consultant was to “…help the scientist fix any problems
that prevented the code from achieving a production run.” The
amount and type of help the consultant provided depended in
large part on the need of the scientist and the amount of
knowledge the consultant had about the scientist’s domain. The
scientists who worked with the consultants whose data are
discussed here varied considerably in their level of computational
expertise. However, there was general agreement with the
statement of one of the consultants that: “the majority of the users
are at the lower skill levels.”

4.2.1 Types of Users and Help Received
Those who required less intensive help included computationally
capable users who needed support with operating in the machine
and infrastructure environment available at the supercomputing
center, but could code their applications themselves. The
problems encountered by these types of users could nevertheless
consume considerable amounts of the consultant’s time;
frequently on the order of two weeks. One example arose because
of different implementations of the programming language MPI22
at the supercomputing center and the scientist’s home machine.
The consultant described the scientist involved in this example as
“a good type of user who can isolate for you what he needed.”
The scientist was suspicious of the results he obtained from his
initial runs of his debugged code on the supercomputing center’s
machine and developed a small one page test program to show the
consultant what he intended to do. However, it took several
rounds of emails to come to a shared understanding of the
solution. The solution developed and debugged by the consultant
would fail to produce the correct scientific results when the
scientist ran it on his home machine which he was using for

2 MPI is the Message Passing Interface, a library of parallel

constructs added to C or Fortran to create parallel code. The
number two refers to a newer version of the of the library that is
being phased in at the center.

development and debugging. Eventually, after several rounds of
emails, they were able to develop a joint understanding of the
cause of the problem.

At the other end of the range were clients who needed help with
their application code. Discussing one such user, one of the
consultants noted “I had to literally work with his code. Had to
work with his application to figure out the problems and then fix
them.” The types of problems addressed by the consultant might
relate to fundamental concepts in parallel programming including
the need to synchronize code operations through parallel
constructs such as locks and wait functions. Occasionally, the
consultants even had to solve serial programming problems such
as memory leaks.

The type of help the consultant could provide depended to some
extent on the match in the pair’s scientific background. As was
demonstrated, the consultants were able to provide value to the
scientists even when they did not share their scientific
background. Such “generic” computational help has some
limitations though. For example, there are domains in which some
familiarity on the consultant’s part with the scientific domain is
critical. Many Quantum Chemists, for example, do not write
“raw code,” but instead use one of the several “packages” that
exist in this computationally mature area. The concept of
packages in Quantum Chemistry is similar to statistical packages
used by social scientists: standard types of analyses are encoded in
pre-specified methods which are made available for the scientist
to “plug-in” her data. The consultant needs to understand the
models behind the various analyses in order to advise the scientist
appropriately. <say something about Shaun’s expertise>

Even in the case of codes written in MPI or other standard HPC
“languages,” the generic consultant is limited in the help he can
provide. Recall the case of the computationally knowledgeable
client who suspected his results though his code ran without error
on the center’s machines. One of the informants noted that in such
cases as a “generic” consultant “You don’t know really. The user
does.” The typically short-term mature of the consultant-client
relationship means that the consultant does not have the
opportunity to learn enough about the domain to provide domain-
specific support. Unlike the team collaboration case described
above where everyone learned a great deal about the earthquake
domain as a result of the long collaboration, casual collaborations
between scientists and computational experts who do not begin
with a shared domain expertise is potentially a permanent
liability.

4.2.2 Division of Labor
Another potential area for problems that was identified in the
casual collaboration related to the expected division of labor
between the consultants and their clients. On the surface, the
division of labor seems straightforward. One consultant described
his job of a computational science consultant thus: “What it is, we
have researchers who know their work, but do not have the
intricate details to program the machines. So we interact with
them; we know the machines, they know their work. (We) get the
programs to run well.” However, cases described by the
consultants revealed that the boundary between the roles is open
to interpretation. One case concerns a consultant working with a
user of one of the Quantum Chemistry packages. The client had
little knowledge of the particular package she needed to use,
though she was well versed in another of the Quantum Chemistry

packages. Her code had several problems. The consultant
diagnosed one of these as being due to a defect in the version of
the package installed at the supercomputing center and he devised
a work-around for his client. Based on his expertise in Quantum
Chemistry and the package the client was using, the consultant
concluded that the other problem was due to the client’s lack of
understanding of how the package worked. Given her knowledge
of another package, he expected her to be able to form a correct
understanding of the current package. However, she pushed back,
giving him the impression that “she wanted me to do it for her.”

Some of the clients seemed to have been setting clear limits with
respect to how much computation they were willing to learn. For
example, one of the consultants noted that many users are only
interested in getting their code to run, and are unwilling to work
to make it run well. He noted that there are “all kinds of users who
are capable but it takes quite a time commitment to do that; but
most users are not interested in it. ” This sentiment is reminiscent
of the feelings expressed by the atomic physicist turned optimizer
quoted previously: computation can seem like a distraction from
the main work of the scientist.

4.2.3 The Consultant’s Influence
Since many of the scientists learn to code through informal means
(“on the job”), they may not necessarily learn good programming
practices. One consultant noted that “Users are stuck in old
practices. One of the problems is that they are stuck in old
models.” They often fail to learn fundamentals of programming
and they fail to take advantage of newer tools that can make them
more efficient (like IDE’s and newer, higher-level languages).
This consultant gave an example concerning the practice of
declaring all of one’s variables in a single place in one’s code.
While this is not required by some programming languages (e.g.,
Fortran), it is a good practice that is especially useful in making it
easier in consultant-client collaborations when one has to read the
code written by another person. This particular consultant has
encountered resistance from some of his clients to this optional
practice. Consequently, he started giving his scientific
collaborators an ultimatum around declaring all variables in a
single place even though (the language they were using in
combination with MPI) Fortran does not require it. “I tell users
that if you don’t use it you are on your own. I keep telling him
‘hey you have to put this in; it’s good practice.”

One interpretation of this example is that it may be possible for
the consultants to exert some degree of influence on their clients.
Even though the relationship is short-term and thus limited in the
amount of cross-influence that can occur, it may be possible for
the consultant to have some leverage with the client and thereby
have the opportunity to teach him some minimal aspects of good
programming practice.

While many of the consultant-client collaborations provide little
opportunity for mutual influence because of their brevity, there
are some exceptions. Once the codes are completely debugged,
the casual collaborations between consultants and their clients are
disbanded and the scientist and his code are passed to the Runtime
Support group. The Runtime Support group is responsible for
ensuring that the codes complete their production runs. As these
may take several weeks to months (most codes share the HPC
machine at the center with many other users), there is ample
opportunity for problems to occur (e.g., a failing file system,
defective CPU nodes). The members of the Runtime Support

organization are primarily responsible for helping the scientist
maneuver these problems.

However, the consultants reported that occasionally the scientists
reverted to asking them for help after responsibility for their codes
had been transitioned to the Runtime Support staff. One
consultant hypothesized that this might indicate that the scientist
had gotten comfortable with him and perhaps felt he could rely on
him. Especially in the case of the less technically experienced
scientists, this could also indicate a reluctance to attempt
communication with a person who may not “speak their
language.” Developing relationships could provide occasions for
the consultant to influence the client. This could be potentially
fruitful if scientists are repeat users of the services of the
supercomputing center. It is the practice of the center to reunite
previous consultant-client pairs should the scientist return to the
center for another run of their code. While this is primarily
motivated by a goal of efficiency, it also provides for continuity in
the relationship between the consultant and the scientist.

5. CONCLUSIONS AND FUTURE WORK
These data support the expected differences between the value
provided in team collaborations and in casual collaborations.
With longer-term, more closely bound collaboration, there is both
more opportunity to develop shared understandings and more
reason to make commitments to accommodate each other (2, 7).
Thus the circumstances of the team type of collaboration make
learning from each other possible. In the particular case of team
collaboration that was described, the depth of the expertise
sharing that took place enabled fundamental changes in the work
of its members. The result of their work was fundamentally a
shared creation.

While general programming help from a consultant can mean the
difference between a scientist producing running code or not, the
lack of shared knowledge places some significant restrictions on
the value that can be provided the scientist. Lack of shared
knowledge between consultant and client imposes a greater
demand on the scientist as he is responsible (or she) for judging
the scientific accuracy of his (or her) results. And the limited
duration of the collaborative relationship means that opportunities
to teach each other will also be limited. Additionally, the time
commitment required of the scientist to improve his
computational skills is at odds with the need to devote time to his
science.

However, the picture for the more casual collaborations is not
hopeless. There is some suggestion that the more computationally
skilled scientists may be more willing to invest time to add to their
knowledge. This was demonstrated by the scientist who instead
of depending on the consultant when his code did not work as
expected, developed a test program to isolate the problem and
help the consultant with the problem diagnosis. The consultants
may also have some leverage with their clients who are less
inclined to undertake to develop computational expertise. At least
in one case, a consultant was willing to set conditions for
providing help. While it is not clear form these data what the
effect of the attempt to shape the client’s behavior was, it may
provide an opportunity to encourage learning to take place.

This paper is based on pilot data: It is based on a small number of
cases and preliminary discussions with the informants. This will
be corrected as this work progresses. A more serious problem is

that only one participant in each collaborative relationship was
interviewed. This of course makes it impossible to corroborate
the interpretations of events, with the possibility that descriptions
are incomplete or incorrect. While I expect that I will be able to
correct this in the case of the team collaborations I may not be
able to do so in the case of the consultant relationships, at least
not with the current participants. The only solution may be find
other cases of such relationships where access to the clients will
be less restrictive (perhaps internally at my employer’s).

6. ACKNOWLEDGEMENTS
This work was in part supported by the HPCS program sponsored
by DARPA. I am indebted to the informants who shared their
experiences with me.

7. REFERENCES
[1] Bannon, L.J. and Schmidt, K. CSCW: Four Characters in

Search of a Context. In Bowers, J.M. and Benford, S.D.
(Eds.) Studies in Computer Supported Cooperative Work,.
Elsevier Science Publishers B.V. (North Holland), 1991.

[2] Bossen, C. The Parameters of Common Information Spaces:
the Heterogeneity of Cooperative Work at a Hospital Ward.
In Computer Supported Cooperative Work (CSCW ’02),
November 16-20, 2002, New Orleans, Louisiana, USA.

[3] Clark, H.H. and Brennan, S.E. Grounding in
Communications. In Resnick, L.B., Levine, J.M. and
Teasley, S.D. (Eds.) Perspectives on Socially Shared
Cognition, APA, 1991, pp. 127-149.

[4] Graham, S.L., Snir, M. and Patterson, C. (Eds.), Getting Up
to Speed: The Future of Supercomputing. Available at:

[5] Hindmarsh, J., Haeath, C., von Lehn, D., and Cleverly, J.
Creating Assemblies: Aboard the Ghost Ship. In Computer
Supported Cooperative Work (CSCW ’02), November 16-20,
2002, New Orleans, Louisiana, USA.

[6] Pollock, L. and Jochen, M. Making Parallel Programming
Accessible to Inexperienced Programmers through
Cooperative Learning. In ACM Special Interest Group on
Computer Science Education (SIGCSE ’01), February, 21-
25, 2001, Charlotte, NC.

[7] Olson, G. O. and Olson. J. S. Distance Matters. In Journal of
Human Computer Interaction, 15 (2-3), 2000, pp. 139-178.

[8] Big City Shakedown: Inside Lemieux, the 1994 Northridge
Earthquake Shakes Almost Like the Real Thing.
http://www.psc.edu/science/2003/earthquake/big_city_shake
down.html.

[9] Halverson, C. Inside large scale parallel codes: it’s not as
different as we thought. (manuscript in preparation).

